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The formula for the tangential Reynolds stresses proposed for the plane turbulent bound- 

ary flows [l, 21 

au” 
zv = pxnTVn - 

ayv ’ 
TV=15 1”[+I’r (0.1) 

is extended to embrace the problem of a plane turbulent wake in the region in which 

it is self-similar (without altering the experimental constants n and x,). It is shown 

that this yields results similar to those given by the Schlichting theory, thus providing 
a link between the empirical constants of the latter theory and the constants of the 
boundary layer turbulence. In particular, this made possible the computation of the 
value of the constant x appearing in the universal logarithmic law, using only the 

experiments dealing with the turbulent wakes. It was found that the value of 6 = 0.18 
recommended by Schlichting has the corresponding value of x = 0.42, which deviates 

only by 5% from the generally accepted value obtained from the Nikuradse experiments. 

When n = 1 and x, = 0.16 (0.1) becomes the known K&m& formula. So far, 
the latter formula has not been used in the problems of free turbulence, since the stream 

and wake velocity profiles have points of inflection (at these points 8% / dy2 = 0 and 
hence by virtue of (O.f), 1 T I -f CO which is absurd). Nevertheless, (0.1) can be 
applied to streams and wakes provided that we assume that the derivative a=u / dlJ2 

does not vanish at the point of inflection of the velocity profile, but passes through it 
undergoing a finite discontinuity of the type f a. The discussion which follows will 
show that such an assumption produces results which are sufficiently near to the experi- 

mental data (while retaining the values of n and xtl which were recommended [l, 21 

for the problems of the boundary layer turbulence). 

1. Using the impulse loss width b,, as the characteristic dimension, we pass to 

the dimensionless variables (here the ticks ” denote the corresponding dimensional 

quantities) xv 1 U,b,, _- 
x=b,, #-_?a 3 Rw- y 

YV bV 
y=- 

b,, ’ 
b=- 

b,, 
u,-ll” V" 

u= 
uc4J ’ v = um R:z 
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where 2bv Czv) denotes the width of the wake, which is finite according to both the 
present theory and the first Prandtl theory. 

Applying the usual simplifications (see [S] ) and utilizing the formula (0. I), we 
reduce the problem of the plane remote turbulent wake to the following: 

‘t = 0, y = 0; u = 0, y = b 

(T = x,T”du / By) 

The above formulas must be supplemented by the equation of continuity 

au/ ax - a?? / ay = 0 

which is necessary for the determination of the velocity ZJ. 

We seek the solution of the problem in question in the self-similar form 

9 = FF fqf, g = y i zB (u = 3% i 8y, ?i = dzl, i ax) (La 

where li, is the dimensionless stream function, while a and b are constants determin- 
ed in the course of solution, from the conditions of its self-similarity. 

Substituting (1.2) into (1.1) we obtain 

01 = 0, p = liZ (1.3) 

and (I.. 1) becomes an ordinary differential equation (in what follows, a prime denotes 
a derivative with respect to q) 

?t, (t?‘F”)’ =T --‘is (F’ $- qF”), t zzzz 1 I;” 13 \ j”” /-2 (1.4) 

This can be integrated once, to assume the following form: 

x, PF” = -‘jgF (1.3 

where it is already assumed that t = 0 when q = 0 . The corr~ponding boundary 

conditions are 
F = 0, q=o 
F = 1, F’ =1 0 , rl==llo 

(1.6) 

where % denotes the coefficient appearing in the equation for the wake boundary 

b -_ n&I’ (1.7) 

The condition that F = 1 when 9 = no emerges from the integral condition (1.1) 
after substituting into it u and y in accordance with (1.2) and (1.3). 

2. Although the number of the boundary conditions (1.6) is equal to the order of 
the differential equation (1,5), nevertheless the problem still remains underde~ned 
since the parameter no is not known. The necessity clause in the auxiUiary condi- 

tion is due to the fact that when formula (0.1) is used, the order of the differential 
equation is higher by one, than that encountered in the traditional approach to the 
problems of free turbulence. In the problems of the boundary layer turbulence such 
an auxiUiary condition is supplied by the K&m&n’s assumption that du I 8~ --) 00 at 
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the wall, which was utilized in [l, 21. 
In computing the turbulent flows and wakes we use, as the axilliary condition, the 

natural assumption that the inflection points on the velocity and wake profiles coincide 
with the position of maximum of the tangential stress. Using (1.4), we can write this 

condition as follows: 

F’ = -qF”, q = ql (b, = b,” / b,, = ,,z”‘) (2.1) 

where yv = blv (xv) is the coordinate of the point of inflection. 

An unknown parameter rh appears in (2.1). Using the available experimental 

data on the profiles of plane turbulent wakes and free streams, we assume that the 

point of inflection of the velocity profile is situated at the distance 0.4bV from its 

axis. The expression corresponding to this assumption is 

'11 = 0.4% (2.2) 

Adding the equations (2.1) and (2.2) to the boundary conditions (1.6) formulated earl- 

ier, makes the problem fully defined. 

3. As we already said, the solution of the problem in question must be sought 

in the class of functions F (rl) , with the derivative F” undergoing a finite discontinu- 
ity of the form +-a at the point 9 = ?h (this corresponds to a finite discontinuity 
in the derivative CPU / 8~3 at the point of inflection of the velocity profile). From this 

we have 

(3.1) 

where F, (q), F2 (q) are analytic functions satisfying the differential equations fol- 

lowing from (1.5), (1,6), with the boundary conditions 

%,tInFln = --‘lz~F~‘r 6 f rl f qr (3.2) 

x,tz*F,” = -‘/M’z”, rll < “‘1 f rlo 
Fl = 0, q = 0; F, = 1, F2’ = 0, q = ‘q. (3.3) . 

and the “matching” requirement 

Fl = F,, F,’ = F2’, F,” = F,“, F1”’ = -FZF,“, q = ql (3.4) 

Equations (2.1) and (2.2) define the position of the matching point. 

when integrating the equations (3.2) numerically on a digital computer, it pays 

to remember that their solutions have the following properties: 

F1 > 0, F,’ > 0, E;” < 0, F,“’ < 0 

Fz > 0, F,’ > 0, F,” < 0, F2”’ > 0 

We note that neither F,” is zero when 11 = 0 nor F2” is zero, when n = Q , 
Le. the velocity profile in the wake has a sharpness, according to the theory in ques- 

tion, on the axis of the flow, as well as at its boundaries. The proposed theory re- 
sembles in this respect the first Prandtl theory. On the other hand, the boundary con- 
ditions z = 0 when n = 0 and 11 = no hold, because Flm and F,“’ tend, at the 
points indicated, to r 00 respectively, in accordance with the following asymtotic 
laws: 
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1 
F,” f - - 

1 
‘10 ’ 

Fa” A 

q @lo - Ggn 
where + denotes the proportionality. 

4. The problem formulated above was solved on a digital computer for the follow- 
ing two sets of values: 

II = 213, It n = 0.55 

n = 4/s, ?t * = 0.59 

which were arrived at [l, S]using the experimental data obtained by Nikuradse and 
others while investigating turbulent flows in pipes. The computations have shown that 
the values of I; (q) and its first three derivatives coincide in both cases to within the 
first two significant figures, and this makes it possible to combine both sets of calcula- 

tions in a single Table 1. 

5. The problem of remote turbulent wake was solved (using the first Prandtl theory) 

by Schlichting (see [3] ). The solution yields the following formulas: 

U, - I,” 1.90 m - rc, = u, = T’!” (5.1) 

?G 
- = 0.065, PU; 

b = 1.147’!? 

1 -!I z’/ !’ 4x -- .I = xR,, = [),, (, d 
w 

where U, - u,V denotes the velocity drop at the wake axis and zMv is the max- 
imum value of the tangential Reynolds stress. 

The corresponding formulas obtained from the proposed novel solution, have the 

form 

F’ (0) 0Jgfp-n) 12 

‘i=-3-= 
** 

j+l+ 

4 1 Q’ h) 0.333 -=_ 
P”Z 2 IF (0)lafi;;n 

=R1_n ._ 

The numerical coefficients appearing in (5.2) were taken from Table 1. 
substituting in(5.2) IL = a/s, R,, = 194 or n = 4/5, R,, = 6475, 

cal results, namely 

1.90 z” 
Ii,= $I0 ’ 

-m = 0.067, 
pllx 

b = 1.122”’ 

(5.2) 

yields identi- 

(5.3) 

The above formulas practically coincide with the Schlichting’s solution (5. I). Using 
the experimental data on the hydrodynamic resistance of circular cylinders within 

the range Re = U,d I v = IO4 +- IO6 of Reynolds numbers, we find that Re = (4 f 

5)R.e. It follows therefore that e. g. the value of Re = 1000 corresponds toR,, = 194 



The plane remote turbulent wake 603 

and Re =3.10* to R,,=6475. 
All this leads to conclusion (remembering that the schlichting theory was matched 

with the experimental data by choosing the value of the parameter 6 = 0.18) that the 

proposed theory should be, in the case n = */5 , in reasonable agreement with the ex- 
periment within the range of Reynolds numbers Re = 10* + 10s. However, the prop- 
osed theory, although coinciding with the Schlichting’s theory at Re = 3 *IO*, should 
give somewhat different results at other values of the Reynolds numbers, predicting a 
reduction in the thickness of the wake and an increase in the value of u,,, 

al to Rej’.’ (compared with the formulas (5.1) ). 

proportion- 

6. In considering the boundary layer flows (in the framework of the proposed theory 
based on the assumption that the thickness of the boundary layer is neglected) we have 
excluded the Kdrm&i case of n = 1 , since it would not allow the condition u = 0 
at the wall to hold. In the case of free turbulent flow, the value IZ = 1 becomes ad- 

missible, Equations (3.2) were integrated numerically on a digital computer also for 

this case, and the constant xn (which K&m& assumed, on the strength of the 
Nikuradse experiments with pipes, to be equal to 0.16) was not set in advance, but 

was determined in the course of solution from the requirement that 

n, = ZJfzi6 = 1.14 (/3 = 0.18) 
(6.1) 

The last equation guarantees that the width of the wake is determined (in computing 
it according to the K&m&i’s variant n = 1) using the formula employed in the 

Schlichting’s method, i. e. the penultimate formula of (5.1). solving the equations 

(3.2) for n = 1 we established, as a result, that the conditions (3.3), (3.4), (2. l), 
(2.2) and in addition (6. l), all hold, provided that x,, = ~2 = 0.176 , and this yields 
x = 0.42. 

This result merits special attention. Indeed, it implies that the empirical const- 

ant x appearing in the universal logarithmic law, the determination of which was 

based, up to now, on the experiments concerning flows in pipes and in boundary layers, 
can be determined (with an error of only 5%) from the measurements showing the 

change in the width of the turbulent wake, with which it has apparently no connection 

whatsoever. It is obvious now that 6 and x are interrelated, and knowing one we 
can obtain the other. This, together with the results obtained in Sect. 5 for the values 

of nZ1.r illustrate the universal character of (0. l), which embrace the problems 
of the boundary layer turbulence and of free turbulence, while retaining the same 
empirical constants for both classes of problems. Table 2 gives the values of the 
function F (n) and its first three derivatives obtained from (3.2) for n= l,xtl= 

0.176. The values in brackets appearing in the column for F' (q) correspond to 

the schlichting solution 

(6.2) 

In Fig. 1 the velocity drop profile in the turbulent wake corresponding to the 

K&m&Ps case is shown with the solid line, and points depict the velocity profile given 
by (6.2). Fig. 1 and Table 2 both show that these profiles practically coincide over 
the whole width of the wake. Similar conclusion is reached by comparing the 
schlichting profile (6.2) with the velocity profile given in Table 1 for n = 2/3 and 
x, = Vs. 
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Table 1 

1 

0.00 
0.10 
0.20 
0.40 
0.60 
0.80 
1.00 
1.075 
1.20 

X0 
2:oo 
2.40 
2.69 

F 

0.00 
0.08 
0.15 
0.30 
0.43 
0.55 
0.65 
0.69 
0.74 
0.81 
0.87 
0.95 
0.99 
1.00 

__________ 

n I F 

0.00 0.000 
(‘.I0 0.186 
0,20 0.356 
Il.30 0.509 
I). 40 0.642 
0.456 0.706 
0 .50 0.750 
0.60 0.834 
0.50 0.896 
0.80 0.942 
0.90 0.973 
1.00 0.992 
1.10 0.999 
2.14 1.000 

F’ 

0.79 
0.77 
0.74 
0.69 
0.63 

E 
0:45 
0.40 
0.33 
0.26 
0.15 
0.05 
0.000 

- 

- 

I F” I F’” I t 
-0.16 
-0.23 
-0.25 
-0.29 
-0.32 
-0.36 
-0.40 
-0.42 
--0.34 
-0.35 
-0.32 
--0.26 
-0.21 
-0.13 

-1000 
-0.27 
-0.20 
-0.17 
-0.17 
-0.20 
-0.24 
f-O.26 
+y; 

Oh6 
0.13 
0.15 
2.95 

- 

- 

1.9ro (1.900) 
1 .774 (1.802) 
1.620 (1.632) 
1.435 (1.422) 

0: ; y& 953 

(1.190) 

(0.958) 
0.726 (0.724) 
0.538 (0.522) 
0.379 (0.322) 
0.244 (0.170) 
0.128 (0.060) 
0.031 
0. 000 

-1.GOO 
--1.404 
-1.686 
--2.013 
-2.443 
---2.763 

-2.503 
---2 .(i52 
_ 1.723 
-- 1.466 
--I .252 
.-I. 061 

I --0.862 --0.713 

0.00 
0.17 
0.39 
0.81 
1.10 
1.21 
1.15 
1.08 
1.19 
1.30 
1.31 
1.03 
0.41 
0.00 

Table 2 

F”’ 

-- iooo 
-2.777 
-2.964 
-3.665 
-5.080 
p.492 
-i-5.387 
~$3.785 
-+2.86!J 
L2.314 
i_l.986 
i-l.866 
r2.364 

mC12.26 

Fig, 1 Fig. 2 
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7. Comparison of the proposed theory with the generally accepted method of com- 
puting the turbulent wakes also in the part of the law of variation in the turbulent vis- 

cosity vz across the wake, is of interest. 
According to the fit prandtl theory [S] we have 

(7.1) 

while his second theory [S] gives 

v,/lJ,be* = 0.0888 

and the proposed theory yields 
(7.2) 

(7.3) 

Figure 2 depicts four curves constructed according to the formulas (7.1) (curve Z), 
(7.2) (curve 2) and (7.3) with R,*= 6475 , and the last formula represented by two 
variants, n = 1, un = 0.176 (curve 3) and n = 4/5, x, = 0.59 (curve 4) , The 

value I?,, = 6475 adopted in the last variant corresponds( as was established before) to 

the case when the values of the width of the wake r$ and ux in this variant all 
coincide with those obtained from the Schlichting formulas. 

Figure 2 implies that the proposed theory in both its variants occupies (as regards 

the variation in the value of vz across the wake) an intermediate position between the 
first and second theory of Prandtl. In the interval 0.2 <q < 0.8 it yields the values 

~7 ! (fJ,b,J which differ little from the constant value of 0.11, and thus resemble 

(‘7,2). However, at the end points of the interval 0 < q < q. we have, according 

to the proposed theory, v2 = 0 as in (7.1). The true value lies apparently between 

the results of the two Prandtl theories. If the first of these theories correctly discerns 

the decrease in vz to zero at the axis and at the free boundaries of the wake, the 

second theory correctly indicates that that the curve v (y”) should rather be box-like 
than parabolic, exaggerating this by assuming that the relation Ye I L’,b,,, is indep- 
endent of yv. 
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